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Soft biological materials can exhibit various active motion such as limit-cycle oscillation. The limit-cycle
oscillation of active matter might be used for a mechanism of locomotion. We propose a simple model of an
active elastic chain as an extension of the van der Pol equation. The uniform state is unstable, and exhibits a
limit cycle of breathing motion. If the breathing motion is mirror symmetric, the elastic chain does not move
as a whole. However, the breathing motion becomes a caterpillar motion and a unidirectional motion is
induced, if an additional heterogeneity is involved or the chain is set on a spatially periodic sawtooth potential.
We also analyze the model equation with coupled mode equations, and try to understand the bifurcation to the
collective oscillation and the directional motion.
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I. INTRODUCTION

Recently, self-organization and collective dynamics of ac-
tive matter have been intensively studied. The collective mo-
tion appears in a large number of limit-cycle oscillators via
mutual synchronization �1,2�. The collective motions of liv-
ing organisms such as bacteria colonies, schools of fish, and
flocks of flying birds have been studied from the viewpoint
of dynamical systems and statistical mechanics �3,4�. A
model including a number of neuro-oscillators was proposed
to control bipedal locomotion �5�. Various active motions in
biological materials have also been intensively studied. For
example, an elastic model was proposed for helices of bac-
terial flagella �6�. The slow dynamics of the cytoskeleton was
studied in the living cell �7�.

Collective oscillations of soft elastic materials were ob-
served in several systems. The self-oscillation was observed
in gels �8�. Spontaneous oscillatory contraction was found in
myofibril �9�. It is interesting that the oscillation occurs in
the volume or the length of the elastic materials in these
systems in contrast to general limit-cycle oscillators. There-
fore, the self-oscillation of large deformation in the elastic
materials can be applicable as soft mechanical devices such
as microactuators and micropumps.

On the other hand, the ratchet motion has been intensively
studied with respect to molecular motors �10,11�. Molecular
motors are energy converters from chemical energy to me-
chanical energy. The ratchet mechanism is one method to
generate a directional motion using thermal energy, chemical
energy, or mechanical energy. There is a controversy with
respect to a ratchet mechanism of the actin-myosin system in
muscle contraction �12,13�. A directional motion of a droplet
using a ratchet mechanism was experimentally demonstrated
on a sawtooth potential by Linke et al. �14�. We studied a
one-dimensional chain of Feynman ratchets, which exhibits a
smooth directional motion �15�.

In this paper, we propose a simple model of an active
elastic chain as one of the simplest models of the self-
oscillation of elastic materials. It is a simple extension of the
van der Pol equation to an elastic chain. The uniform solu-
tion is unstable and exhibits a limit cycle of breathing mo-

tion. The breathing motion is mirror symmetric with respect
to the center of mass, and therefore the elastic chain does not
move as a whole. However, the breathing motion becomes a
caterpillar motion, and a directional motion is induced by
introducing some heterogeneity in the coupling strength or
by setting the elastic chain on a spatially periodic sawtooth
potential. That is, this model works as a deterministic ratchet.
It is a mechanism to convert the energy of breathing motion
into the energy of a directional motion.

II. MODEL EQUATION AND THE LIMIT-CYCLE
OSCILLATION

The van der Pol equation is a typical model equation
which exhibits the limit-cycle oscillation. It was originally
proposed as a model equation for an electric oscillator in-
cluding a vacuum tube. Here, the van der Pol equation is
interpreted as a model for an elastic oscillator, which is
written as

FIG. 1. Schematic figures of elastic chains �a� for Eq. �3� and
Fig. 2, �b� for Eq. �7� and Fig. 3, �c� for Eq. �11� and Fig. 4, and �d�
for Eq. �12� and Fig. 5.
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d2x

dt2 = �� − bx2�
dx

dt
− Kx , �1�

where x is the position of the oscillator, K denotes a spring
constant, � is a control parameter representing the distance
from the instability point, and b is the coefficient of the non-
linear term. On the other hand, a simple model for a linear
elastic chain is written as

d2xi

dt2 = K�xi+1 − 2xi + xi−1� , �2�

where xi is the position of the ith elastic element and K is the
coupling constant. We propose a simple model equation as a
combination of Eqs. �1� and �2�:

d2xi

dt2 = �� − b�xi+1 − xi−1 − 2a�2�
dxi

dt
+ K�xi+1 − 2xi + xi−1� ,

�3�

where a is a natural length between the neighboring ele-
ments, and b is the coefficient of the nonlinear term. Figure
1�a� is a schematic figure for the elastic chain with K=1. The
boundary conditions are assumed to be xN+1=xN+a and x0
=x1−a. It corresponds to the no-flux boundary conditions for
the partial differential equation. If ��0, the system is stable,

and xi is located at the natural position xi= ia. However, the
stationary solution becomes unstable for ��0. The local de-
formation xi+1−xi−1 deviates from 2a. If the local deforma-
tion �xi+1−xi−1−2a� is larger than �� /b, the instability will be
locally suppressed by the nonlinear term in Eq. �3�.

In this paper, the parameters N, K, and b are set to be N
=30, K=1, b=1 /4, and a=1. Figure 2�a� shows time evolu-
tions of xi�t� at �=0.001. The total length xN−x1 exhibits a
limit-cycle oscillation. Even for the sufficiently small value
of �, a triangular-wave oscillation is observed. The period is
T=60, which is close to 2N.

The position xi�t� is approximately expressed by the Fou-
rier transform as

xi�t� = ia + 	
k=0

N−1

Ak cos�2�k�i − 1�/N� ,

owing to the no-flux boundary conditions. Since the breath-
ing motion is mirror symmetric with respect to the center of
mass, the Fourier amplitude Ak with even k is zero. If the
Fourier amplitudes other than A1 and A3 are neglected, A1
and A3 obey coupled mode equations
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FIG. 3. �a� Time evolution of xi�t� for �=0.001, F=0, and �K=0.003. �b� Time evolutions by Eq. �3� of A1�t� �solid curve� and A2�t�
�dashed curve� for �=0.001 and �K=0.003. �c� The average velocity v as a function of �K. The circles denote the results by direct numerical
simulation, and the crosses denote the estimate by Eq. �9�.
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FIG. 2. �a� Time evolution of xi�t� for �=0.001 by Eq. �3�. �b� Time evolutions by Eq. �4� of A1�t� �dashed curve with large amplitude�,
A3�t� �dashed curve with small amplitude�, and A1�t�+A3�t� �solid curve� for �=0.001. �c� Comparison of the amplitude of xN�t� by Eq. �3�,
A1�t�+A3�t� by Eq. �4�, and A10 by Eq. �6� as a function of �.
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d2A1

dt2 = �
dA1

dt
− �1

2A1 − bc1
2A1

2
dA1

dt
−

dA3

dt
�

− 2bc3
2A3

2dA1

dt
− 2bc1c3A1A3

dA1

dt
,

d2A3

dt2 = �
dA3

dt
− �3

2A3 − bc3A3
2dA3

dt
+ bc1

2A1
2dA1

dt
− 2bc1

2A1
2dA3

dt
,

�4�

where �1=�2�1−cos�� /N��, �3=�2�1−cos�3� /N��, c1
=sin�� /N�, and c3=sin�3� /N�. Note that the frequency �1
�� /N and therefore the period T is approximated at 2N for
large N, and the natural frequency �3 for A3 is close to 3�1.
The Fourier modes A1 and A3 exhibit the Hopf bifurcation
simultaneously at �=0 in Eq. �4�. More generally, it can be
shown that all the Fourier modes Ak’s exhibit the Hopf bifur-
cation simultaneously at �=0 in the coupled mode equations
including all the Fourier modes. It is a unique point in our
model equation �3�. Figure 2�b� shows time evolutions of
A1�t�, A3�t�, and A1�t�+A3�t� for �=0.001. The frequency
locking of 1:3 takes place between the two modes A1 and A3
owing to the nonlinear terms in Eq. �4�. The summation
A1�t�+A3�t� takes a triangular wave owing to the mutual en-
hancement of the peak structure. If the Fourier amplitude A3

is further neglected, A1 obeys the van der Pol equation

d2A1

dt2 = �
dA1

dt
− �1

2A1 − bc1
2A1

2dA1

dt
. �5�

If A1=A10 cos �1t is assumed, A10 is evaluated as

A10 =
�4�/b

sin��/N�
. �6�

Figure 2�c� shows the amplitudes of the oscillatory time evo-
lutions of xN�t� by Eq. �3�, A1�t�+A3�t� by Eq. �4�, and A10 by
Eq. �6�. For sufficiently small �, xN�t� by Eq. �3� can be
approximated at A1�t�+A3�t� by Eq. �5�. When � is suffi-
ciently small, the oscillatory time evolution is well approxi-
mated at A1�t�+A3�t�. However, higher harmonics Ak with
k�5 is necessary and the approximation using only the two
modes becomes worse, when � is increased.

III. UNIDIRECTIONAL MOTION BY HETEROGENEITY

In this section, we consider a model including some het-
erogeneity in the coupling constant. The model equation is
written as
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FIG. 4. �a� Time evolution of xi�t� for �=0.001, F=0.0001, and �K=0.003. �b� Time evolutions by Eq. �3� of A1�t� �solid curve� and A2�t�
�dashed curve� for �=0.001, F=0.0001, and �K=0.003. �c� The average velocity v as a function of F. The circles denote the results by direct
numerical simulation, and the crosses denote the estimate by Eq. �9�.
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FIG. 5. �a� Time evolution of xi�t� for �=0.001, F=0, �K=0, and f0=0.001. �b� Time evolutions of A1�t� �solid curve� and A2�t� �dashed
curve� for f0=0.001 and F=0. �c� Average velocity v as a function of f0 for F=0. The circles denote the results by direct numerical
simulation, and the crosses denote the estimate by Eq. �9�. �d� Average velocity v as a function of F for f0=0.001. The circles denote the
results by direct numerical simulation, and the crosses denote the estimate by Eq. �9�.
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d2xi

dt2 = �� − b�xi+1 − xi−1 − 2a�2�
dxi

dt

+ K�i + 1/2��xi+1 − xi� − K�i − 1/2��xi − xi−1� , �7�

where K�i+1 /2� denotes the coupling constant between the
ith and the �i+1�th elements. As shown schematically in Fig.
1�b�, the coupling constant is slightly larger by �K near the
the right end. In the numerical simulations, the coupling con-
stant is set to be K�i+1 /2�=1 for i	25, and K�i+1 /2�=1
+�K for i�26. Figure 3�a� shows time evolutions of xi�t� for
�=0.001 and �K=0.003. The mirror symmetry of the breath-
ing motion is broken in this inhomogeneous system. A drift
motion accompanying the breathing motion appears as a re-
sult of the asymmetry, which is similar to a caterpillar mo-
tion. There is a phase difference in the oscillations at the
right and left ends.

Because the breathing motion is asymmetric, the Fourier
amplitudes with even k appear in the coupled mode equa-
tions. Figure 3�b� displays time evolution of A1�t� and A2�t�
calculated from the numerical result of the direct simulation
of Eq. �3�. That is, A1�t� and A2�t� are obtained from Ak
= �2 /N�	 j=1

N �xj − ja�cos�2�k /N�. From Fig. 3�b�, A1�t� and

A2�t� can be approximately expressed as A1�t�
=2.11 cos�2��t−9712.7� /60� and A2�t�=0.145 cos�4��t
−9720.4� /60�. We can obtain coupled mode equations of A0,
A1, and A2 by neglecting all the other Fourier modes from
Eq. �3�. Then, A0�t� obeys the equation

d2A0

dt2 = �
dA0

dt
− 2b�c1

2A1
2 + c2

2A2
2�

dA0

dt

− 2bc1c2A1A2
dA1

dt
+ bc1

2A1
2dA2

dt
, �8�

where c1=sin�� /N� and c2=sin�2� /N�. The average veloc-
ity v of the drift motion of the elastic chain is approximated
by the temporal average of dA0 /dt, because A0�t� represents
the position of the center of mass. It is evaluated as

v =
2bc1c2A1�t�A2�t��dA2/dt�� − bc1

2A1�t�2�dA2/dt��
� − 2bc1

2A1�t�2� − 2bc2
2A2�t�2�

,

�9�

where ¯� implies a temporal average. If A1�t�
=A10 cos��1�t− t1�� and A2�t�=A20 cos�2�1�t− t2�� are as-
sumed, the average velocity v is calculated as

v =
b�1A10

2 A20 sin�2�1�t1 − t2���sin2��/N� + sin��/N�sin�2�/N��
2� − 2b�A10

2 sin2��/N� + A20
2 sin2�2�/N��

. �10�

The average velocity is therefore evaluated as v=0.024 from
the approximation A1�t�=2.11 cos�2��t−9712.7� /60� and
A2�t�=0.145 cos�4��t−9720.4� /60� for �=0.001 and �K
=0.003, which is close to the numerical value 0.0237. Figure
3�c� shows the average velocity v as a function of �. The
circles denote the average velocity by the direct numerical
simulation and the crosses denote the estimate by Eq. �9�.
Fairly good agreement implies that the directional motion is
caused by the asymmetric breathing motion.

We can further include a Coulomb-type friction, which is
a sliding friction with a solid surface, as shown schemati-
cally in Fig. 1�c�. The model equation is written as

d2xi

dt2 = �� − b�xi+1 − xi−1 − 2a�2�
dxi

dt
+ K�i + 1/2��xi+1 − xi�

− K�i − 1/2��xi − xi−1� − F
dxi/dt

�dxi/dt�
, �11�

where F denotes the strength of the sliding friction. Figure
4�a� shows time evolutions of xi�t� for �=0.001 and F
=0.0001. The coupling constant is set to be K�i+1 /2�=1 for
i	25 and K�i+1 /2�=1+�K=1.003 for i�26, which is the
same as the case of Fig. 3. As compared with Fig. 3�a�, the
average velocity v is larger owing to the effect of the sliding
friction. It is interesting that the friction facilitates the direc-
tional motion. Figure 4�b� shows time evolutions of A1�t�

and A2�t� for �=0.001 and F=0.0001. In contrast to Fig.
3�b�, the amplitude of A1�t� decreases owing to the Coulomb
friction. However, the amplitude of A2�t� and the phase dif-
ference �1�t2− t1� are larger than the case of F=0. As is
predicted from Eq. �10�, the increase of the amplitude of A2
and the phase difference makes the average velocity in-
crease. Figure 4�c� shows the average velocity v as a func-
tion of F for �=0.001 and �K=0.003. Actually, the average
velocity increases with F. However, the breathing motion
and then the caterpillar motion stop for F�Fc=0.000125.
Near the threshold value Fc, the estimation by Eq. �9� for the
average velocity becomes worse, where the higher harmonics
is necessary.

IV. UNIDIRECTIONAL MOTION
BY A RATCHET MECHANISM

In this section, we consider a drift motion on a spatially
periodic sawtooth potential. The Coulomb friction is also
included. The model equation is written as

d2xi

dt2 = �� − b�xi+1 − xi−1 − 2a�2�
dxi

dt
+ K�xi+1 − 2xi + xi−1�

−
�U

�x
− F

dxi/dt

�dxi/dt�
, �12�

where U�x� is a sawtooth potential with period L. We have
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used a sawtooth potential U�x�, whose gradient is expressed
as −�U /�x=−f0 /3 for 0�xi�3L /4 and −�U /�x= f0 for
3L /4�xi�L. The parameter L is set to be L=6 for the nu-
merical simulation, and the strength f0 of the sawtooth po-
tential is changed as a parameter. Figure 5�a� shows time
evolutions of xi�t� for �=0.001, K=1, F=0, and f0=0.001.
The mirror symmetry of the breathing motion is broken by
the sawtooth potential. A drift motion such as a caterpillar
motion appears similarly to the previous model. Figure 5�b�
shows time evolutions of A1�t� and A2�t� for �=0.001, F=0,
and f0=0.001. The Fourier mode A2�t� of even k �k=2� is
excited by the sawtooth potential. Figure 5�c� shows the av-
erage velocity v as a function of f0. The circles denote the
average velocity v by direct numerical simulation and the
crosses denote the estimate by Eq. �9�. Fairly good agree-
ment is seen. The average drift velocity v increases with f0;
however, there are flat regions in the curve of v�f0� where
v�f0��const. It might imply a spatial locking phenomenon.
Figure 5�d� shows the average velocity v as a function of F
at f0=0.001. The average drift velocity increases with the
coefficient F of the sliding friction until F=Fc=0.00013. For
F�Fc, the breathing motion stops owing to the strong fric-
tion. It is interesting that the friction facilitates the caterpillar
motion also in this model.

V. SUMMARY

We have found a breathing motion in a simple model of
an active elastic filament. If the mirror symmetry of the
breathing motion is broken, a directional motion similar to a
caterpillar motion appears. The asymmetry has been intro-
duced by a heterogeneity of the coupling strength or an ex-
ternal sawtooth potential. It is a mechanism to convert a part
of the energy of the breathing motion into the energy of the
directional motion. The Coulomb friction tends to enhance
the directional motion. Our model can be interpreted as an
example of deterministic ratchets. The model is also consid-
ered to be an example of self-organization of collective mo-
tion in a large number of active elements.

The model system was analyzed with the coupled mode
equations. The simultaneous Hopf bifurcation of all the Fou-
rier modes is a unique point in our model. As a result, not a
sinusoidal oscillation but a triangular oscillation appears near
the Hopf bifurcation. A drift motion occurs as a result of the
appearance of the Fourier mode Ak of even k.

Our model is just a simple model constructed from a com-
bination of the van der Pol equation and a linear elastic
chain. The model might be too simple to apply to realistic
elastic materials. It is necessary to elaborate the model in the
future to apply to the oscillation in gel or myofibril.
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